Sabtu, 28 November 2009

Dasar Pengecoran Logam (Casting)



Proses Pengecoran (casting) adalah salah satu teknik pembuatan produk dimana logam dicairkan dalam tungku peleburan kemudian dituangkan ke dalam rongga cetakan yang serupa dengan bentuk asli dari produk cor yang akan dibuat. Pengecoran juga dapat diartikan sebagai suatu proses manufaktur yang menggunakan logam cair dan cetakan untuk menghasilkan bagian-bagian dengan bentuk yang mendekati bentuk geometri akhir produk jadi. Proses pengecoran sendiri dibedakan menjadi dua macam, yaitu traditional casting (tradisional) dan non-traditional (nontradisional). Teknik tradisional terdiri atas:
1. Sand-Mold Casting
2. Dry-Sand Casting
3. Shell-Mold Casting
4. Full-Mold Casting
5. Cement-Mold Casting
6. Vacuum-Mold Casting
Sedangkan teknik non-traditional terbagi atas :
1. High-Pressure Die Casting
2. Permanent-Mold Casting
3. Centrifugal Casting
4. Plaster-Mold Casting
5. Investment Casting
6. Solid-Ceramic Casting
Ada 4 faktor yang berpengaruh atau merupakan ciri dari proses pengecoran, yaitu:
1. Adanya aliran logam cair ke dalam rongga cetak
2. Terjadi perpindahan panas selama pembekuan dan pendinginan dari logam dalam cetakan
3. Pengaruh material cetakan
4. Pembekuan logam dari kondisi cair
Klasifikasi pengecoran berdasarkan umur dari cetakan, ada pengecoran dengan sekali pakai (expendable mold) dan ada pengecoran dengan cetakan permanent (permanent mold). Cetakan pasir termasuk dalam expendable mold. Oleh karena hanya bisa digunakan satu kali pengecoran saja, setelah itu cetakan tersebut dirusak saat pengambilan benda coran. Dalam pembuatan cetakan, jenis-jenis pasir yang digunakan adalah pasir silika, pasir zircon atau pasir hijau. Sedangkan perekat antar butir-butir pasir dapat digunakan, bentonit, resin, furan atau air gelas. Secara umum cetakan harus memiliki bagian-bagian utama sebagai berikut :
• Cavity (rongga cetakan), merupakan ruangan tempat logam cair yang dituangkan kedalam cetakan. Bentuk rongga ini sama dengan benda kerja yang akan dicor. Rongga cetakan dibuat dengan menggunakan pola.
• Core (inti), fungsinya adalah membuat rongga pada benda coran. Inti dibuat terpisah dengan cetakan dan dirakit pada saat cetakan akan digunakan. o Gating sistem (sistem saluran masuk), merupakan saluran masuk kerongga cetakan dari saluran turun.
• Sprue (Saluran turun), merupakan saluran masuk dari luar dengan posisi vertikal. Saluran ini juga dapat lebih dari satu, tergantung kecepatan penuangan yang diinginkan.
• Pouring basin, merupakan lekukan pada cetakan yang fungsi utamanya adalah untuk mengurangi kecepatan logam cair masuk langsung dari ladle ke sprue. Kecepatan aliran logam yang tinggi dapat terjadi erosi pada sprue dan terbawanya kotoran-kotoran logam cair yang berasal dari tungku kerongga cetakan.
• Raiser (penambah), merupakan cadangan logam cair yang berguna dalam mengisi kembali rongga cetakan bila terjadi penyusutan akibat solidifikasi.
Logam-logam yang dapat digunakan untuk melakukan proses pengecoran yaitu: Besi cor, besi cor putih, besi cor kelabu, besi cor maliable, besi cor nodular, baja cor dan lainlain. Peleburan logam merupakan aspek terpenting dalam operasi-operasi pengecoran karena berpengaruh langsung pada kualitas produk cor. Pada proses peleburan, mula-mula muatan yang terdiri dari logam, unsur-unsur paduan dan material lainnya seperti fluks dan unsur pembentuk terak dimasukkan kedalam tungku.
Fluks adalah senyawa inorganic yang dapat “membersihkan” logam cair dengan menghilangkan gas-gas yang ikut terlarut dan juga unsur-unsur pengotor (impurities). Fluks memiliki beberpa kegunaan yang tergantung pada logam yang dicairkan, seperti pada paduan alumunium terdapat cover fluxes (yang menghalangi oksidasi dipermukaan alumunium cair),. Cleaning fluxes, drossing fluxes, refining fluxes, dan wall cleaning fluxes. Tungku-tungku peleburan yang biasa digunakan dalam industri pengecoran logam adalah tungku busur listrik, tungku induksi, tungku krusibel, dan tungku kupola.
Selengkapnya...



Sand Casting



Material cetakan yang digunakan pada praktikum kali ini adalah material pasir silica. Dengan penambahan penguat seperti clay, bentonite dan penghalus permukaan serbuk arang. Pada praktikum ini terdapat eberapa jenis pasir yang digunakan, antara lain :
1. Pasir muka (facing sand)
Pasir muka merupakan pasir utama yang bersentuhan langsung dengan pola dan digunakan untuk menutupi pola benda pada pembuatan cetakan baik dibagian kup maupun drag. Pasir muka yang digunakan harus memiliki kualitas baik sehingga dalam pembuatannya komposisinya perlu diperhitungkan dengan teliti. Hal ini diperlukan karena pasir muka ini akan langsung bersentuhan dengan logam cair dan akan menentukan bentuk dan dimensi dari benda cor serta memberikan sifat kehalusan permukaan pada benda hasil cor. Dalam pasir tersebut masih mengandung unsur lain sebagai penguat dan penghalus permukaan material.
a. Bentonit merupakan bahan pengikat yang umum digunakan dalam pasir cetak basah. Bentonit adalah istilah yang digunakan untuk sejenis lempung yang memiliki sifat menyerap air lebih besar dibandingkan dengan jenis tanah liat lainnya. Pada percobaan ini digunakan 9% bentonit agar permeabilitasnya besar dan tetap memiliki sedikit kekuatan tekan sehingga mampu untuk menopang benda cor serta memiliki sifat collapsibility yang baik.
b. Gula tetes (molases) ditambahkan untuk meningkatkan waktu efektif pasir (bench life) dan memberikan kekuatan kering yang tinggi. Karena kekentalan yang tinggi dan wettability yang baik maka akan menghasilkan kekuatan basah yang baik pula. Pada temperatur tinggi, gula tetes akan terurai menjadi CO2 yang akan meningkatkan kekerasan dan kekuatan tekan akibat panas cetakan. Pada percobaan ini digunakan gula tetes (molases) 2% pada pasir muka.
c. Bahan berserat yang digunakan dalam praktikum kali ini adalah serbuk arang. Berdasarkan literatur[1], penggunaan serbuk arang 1% pada praktikum ini sesuai dengan literatur yang ada dan sesuai dengan kebutuhan karena menghasilkan cetakan permukaannya halus dan mudah dalam pembongkarannya.
2. Pasir pendukung (back sand)
Pasir pendukung (backsand) merupakan pasir yang tidak bersentuhan langsung dengan pola. Pasir pendukung yang digunakan memiliki kualitas yang lebih rendah dibandingkan pasir muka, karena pasir yang digunakan untuk back sand merupakan pasir yang sudah terpakai atau berasal dari pasir bekas proses pengecoran sebelumnya. Material pasir yang kami gunakan untuk back sand telah mengalami kehilangan kadar air akibat proses penguapan oleh panas dan udara karena tempat penyimpanan pasirnya langsung berhubungan dengan udara
3. Pasir reparasi (back sand)
Pasir reparasi merupakan pasir yang digunakan untuk memperbaiki permukaan cetakan yang rusak atau rontok pada saat pengangkatan pola. Pasir reparasi yang digunakan pasir memiliki kadar gula yang lebih tinggi dari pasir muka. Umumnya bahan pelapis yang digunakan harus memiliki temperatur lebur yang lebih tinggi daripada pasir dan dapat membentuk penghalang yang tidak tembus oleh logam cair.
Pada praktikum ini dilakukan coating pada bagian dari cetakan pasir yang ambruk. Hal ini sesuai dengan aplikasi dari coating, karena coating berfungsi untuk memperhalus permukaan tetapi dia juga berfungsi sebagai pembentuk lapisan penghalang yang anti tembus oleh logam cair, sehingga cacat-cacat yang umumnya diakibatkan antara persentuhan antara logam cair dan cetakan dapat diminimalisir.
Proses Peleburan Alumunium
Pada proses peleburan digunakan dapur krusibel. Material yang digunakan adalah scrap Al hasil penelitian mahasiswa. Hal yang pertama kali dilakukan adalah proses persiapan dapur. Dimulai dari pembersihan tungku lebur dan melapisi dengan coating hingga penempatan briket batubara dalam tungku besar. Selama proses peleburan, material Al yang digunakan dilakukan proses pre-heating. Hal ini bertujuan untuk menghilangkan moisture pada permukaan material untuk menghindari pembentukan gas dan melarut dalam logam cair yang dapat menyebabkan cacat gas. Setelah proses pre-heating maka material logam dimasukkan kedalam tungku dan dibiarkan melebur. Selama peleburan briket batubara terus ditambahkan untuk menjaga kestabilan suplai kalor untuk melebur logam.

i. Alloying
Pada proses pengecoran dimana selain bertujuan menghasilkan produk yang sesuai dengan dimensi juga dibutuhkan nilai sifat mekanis material yang sesuai. Pemberian material tambahan (alloying) bertujuan untuk meningkatkan harga sifat mekanis dari material. Untuk material Al pemberian alloying menggunakan material Cu, Zn, Mg, P, Si, Sr, dan Na. Pada praktikum ini penguatan alloying tidak dilakukan. Jika dilakukan dan kemudian sampel dilakukan pengujian (tarik, keras) maka dihasilkan nilai yang lebih besar dibanding tanpa alloying.
ii. Degassing
Pada temperatur tinggi gas hidrogen akan cenderung berdifusi kedalam logam cair. Gas-gas hidrogen ini harus dikeluarkan dari Aluminium cair karena akan menyebabkan terjadinya cacat pada benda cor. Proses pengeluaran gas ini disebut proses degasser. Umumnya degasser yang digunakan adalah dalam bentuk tablet atau gas (gas argon dan gas nitrogen). Mekanisme pengeluaran gas pada logam Aluminium cair adalah sebagai berikut :
Tablet yang dimasukkan ke dalam Aluminium cair akan menghasilkan gas dalam bentuk gelembung yang hampir hampa udara (< 1 atm). Gas hidrogen yang terlarut dalam Aluminium tidak dapat keluar karena tekanan didalam Aluminium cair << 1 atm sedangkan tekanan diluar sebesar 1 atm. Akibatnya gelembung udara yang dihasilkan tablet masuk ke dalam gas hidrogen dan gelembung udara tersebut terbawa keatas bersaman dengan kotoran lain yang terlarut didalam Aluminium cair. Gas-gas atau gelembung udara tersebut sebagian akan menjadi dross dan akan dibuang melalui proses pembuangan dross. Pada praktikum ini degasser tidak digunakan.
iii. Cover Flux
Setelah proses degasser selesai dilanjutkan dengan proses pemberian flux. Proses pemberian flux bertujuan untuk menutupi atau covering permukaan logam Aluminium cair agar terhindar dari masuknya gas hidrogen kedalam logam aluminium. Pemberian flux dilakukan pada saat mulai pencairan aluiminium dengan cara menaburkan flux pada permukaan Aluminium cair. Covering flux berfungsi untuk covering permukaan logam cair agar terhindar dari masuknya gas hidrogen . Pemberian flux jenis ini dilakukan tanpa pengadukan. Pada saat praktikum digunakan flux covering.
Selengkapnya...



MATERIAL TEKNIK



Mengenal Material dan Mineral
Material dapat berupa bahan logam dan non logam. Bahan logam ini terdiri dari logam ferro dan nonferro. Bahan logam ferro diantaranya besi, baja, dan besi cor, sedangkan logam nonferro (bukan besi) antara lain emas, perak, dan timah putih. Bahan non logam dapat dibagi menjadi bahan organik (bahan yang berasal dari alam) dan bahan anorganik. Selain pengelompokan di atas, material juga dapat dikelompokkan berdasarkan unsur-unsur kimia, yaitu unsur logam, nonlogam dan metalloid. Dengan mengetahui unsur-unsur kimia ini, kita dapat menghasilkan logam yang kuat dan keras sesuai kebutuhan.

1. Berbagai Macam Sifat Logam.
Logam mempunyai beberapa sifat antara lain: sifat mekanis, sifat fisika, sifat kimia dan sifat pengerjaan. Sifat mekanis adalah kemampuan suatu logam untuk menahan beban yang diberikan pada logam tersebut. Pembebanan yang diberikan dapat berupa pembebanan statis (besar dan arahnya tetap), ataupun pembebanan dinamis (besar dan arahnya berubah). Yang termasuk sifat mekanis pada logam, antara lain: kekuatan bahan (strength), kekerasan elastisitas, kekakuan, plastisitas, kelelahan bahan, sifat fisika, sifat kimia, dan sifat pengerjaan. Kekuatan (strength) adalah kemampuan material untuk menahan tegangan tanpa kerusakan. Beberapa material seperti baja struktur, besi tempa, alumunium, dan tembaga mempunyai kekuatan tarik dan tekan yang hampir sama. Sementara itu, kekuatan gesermya kira-kira dua pertiga kekuatan tariknya. Ukuran kekuatan bahan adalah tegangan maksimumnya, atau gaya terbesar persatuan luas yang dapat ditahan bahan tanpa patah. Untuk mengetahui kekuatan suatu material dapat dilakukan dengan pengujian tarik, tekan, atau geser. Kekerasan (hardness) adalah ketahanan suatu bahan untuk menahan pembebanan yang dapat berupa goresan atau penekanan. Kekerasan merupakan kemampuan suatu material untuk menahan takik atau kikisan. Untuk mengetahui kekerasan suatu material digunakan uji Brinell. Kekakuan adalah ukuran kemampuan suatu bahan untuk menahan perubahan bentuk atau deformasi setelah diberi beban. Kelelahan bahan adalah kemampuan suatu bahan untuk menerima beban yang berganti-ganti dengan tegangan maksimum diberikan pada setiap pembebanan. Elastisitas adalah kemampuan suatu bahan untuk kembali ke bentuk semula setelah menerima beban yang mengakibatkan perubahan bentuk. Elastisitas merupakan kemampuan suatu material untuk kembali ke ukuran semula setelah gaya dari luar dilepas. Elastisitas ini penting pada semua struktur yang mengalami beban yang berubah-ubah terlebih pada alat-alat dan mesin-mesin presisi. Plastisitas adalah kemampuan suatu bahan padat untuk mengalami perubahan bentuk tetap tanpa ada kerusakan. Sifat fisika adalah karakteristik suatu bahan ketika mengalami peristiwa fisika seperti adanya pengaruh panas atau listrik. Yang termasuk sifat-sifat fisika adalah sebagai berikut: Titik lebur, Kepadatan, Daya hantar panas, dan daya hantar listrik. Sifat kimia adalah kemampuan suatu logam dalam mengalami peristiwa korosi. Korosi adalah terjadinya reaksi kimia antara suatu bahan dengan lingkungannya. Secara garis besar ada dua macam korosi, yaitu korosi karena efek galvanis dan reaksi kimia langsung.
Sifat pengerjaan adalah suatu sifat yang timbul setelah diadakannya proses pengolahan tertentu. Sifat pengerjaan ini harus diketahui terlebih dahulu sebelum pengolahan logam dilakukan. Ada dua macam pengerjaan yang biasa dilakukan yaitu sebagai berikut :
2. Mineral.
Mineral merupakan suatu bahan yang banyak terdapat di dalam bumi, yang mempunyai bentuk dan ciri-ciri khusus serta mempunyai susunan kimia yang tetap. Moneral memliki ciri-ciri khas antara lain:
a. Warna, mineral mempunyai warna tertantu, misalnya malagit berwarna hijau, lazurit berwarna biru, dan ada pula mineral yang memiliki bermacam-macam warna misalnya kuarsa.
b. Cerat, merupakan warna yang timbul bila mineral tersebut digoreskan pada porselen yang tidak dilicinkan.
c. Kilatan merupakan sinar suatu mineral apabila memantulkan cahaya yang dikenakan kepadanya. Misalnya emas, timah, dan tembaga yang mempunyai kilat logam.
Kristal atau belahan merupakan mineral yang mempunyai bidang datar halus. Misalnya, seng, bentuk kristalnya dapat dipecah-pecah menjadi beberapa kubus dan patahannya akan terlihatk dengan jelas. Setiap mineral memiliki bentuk kristal yang berbeda-beda. Contohnya bentuk kubus pada galmer (bilih seng), bentuk heksagonal (enam bidang) pada kuarsa. dan lain-lain.
d. Berat jenis, mineral mempunyai berat jenis antara 2 – 4 ton/m2. Berat jenis ini akan berubah setelah diolah menjadi bahan.
3. Berbagai Jenis Sumber Daya Mineral
a. Unsur-unsur Logam
Unsur-unsur logam dibagi lagi dalam dua kelompok menurut banyaknya, yaitu yang berlimpah di kerak bumi seperti besi, alumunium, mangan, dan titanium, dan yang sedikit terdapat di alam seperti tenbaga, timah hitam.
b. Unsur-unsur Nonlogam
Unsur-unsur nonlogam (nonmetallic) dapat dibagi menjadi empat kelompok berdasarkan kegunaannya, antara lain :
Natrium klorida, kalsium fosfat, dan belerang merupakan bahanbahan utama industri-industri kimia dan pupuk buatan. Pasir, batu kerikil, batu hancur, gips, dan semen terutama dipakai sebagai bahan-bahan bangunan dan konstruksi lainnya. Bahan bakar fosil, yaitu yang berasal dari sisa-sisa tanaman dan binatang seperti batubara, minyak bumi, dan gas alam. Persediaan energi kita sekarang sangat bergantung pada bahan-bahan ini. Air merupakan sumber mineral terpenting dari semuanya yang terdapat melimpah di permukaan bumi. Tanpa air tidak mungkin kita dapat menanam dan menghasilkan bahan makanan.
4. Pemurnian Mineral
Mineral pada awalnya ditemukan di alam masih bercampur dengan mineral lain sehingga perlu dilakukan proses pemurnian untuk mendapatkan satu bentuk mineral. Pemurnian mineral adalah proses memisahkan satu bentuk mineral dari mineral-mineral lainnya melalui satu proses dan cara tertentu.
a. Proses pemurnian bijih besi
Melebur dan mengoksidasi besi adalah proses kimia yang sederhana. Selama proses itu, karbon dalam bentuk kokas dan oksida besi bereaksi pada suhu tinggi, membentuk metalik iron (besi yang bersifat logam) dan gas karbon dioksida. Karena bijih besi jarang ada yang murni, batu kapur (CaCO3) harus juga ditambahkan sebagai imbuh (flux) agar bercampur dengan kotoran-kotoran dan mengeluarkannya sebagai slag (terak). Dapur pengolahan biji besi menjadi besi. Sejak abad ke-14 besi mulai diproduksi dalam jumlah besar dan dasar-dasar eksploitasi industri besi secara modern sudah dimulai. Setelah itu diperoleh berbagai penemuan dalam produksi besi, antara lain: (a) metode untuk memproduksi baja yang berkualitas tinggi dari besi kasar, (b) prosedur-prosedur tanur yang lebih efisien, termasuk juga pemakaian kokas yang dibuat dari batu bara sebagai pengganti arang kayu, akibat semakin berkurangnya persediaan kayu. (c) metode-metode untuk mereduksi bijih besi. (d) metode-metode untuk memamfaatkan bijih-bijih besi yang mengandung kotoran-kotoran perusak seperti fosfor dan belerang.dan (d) metode-metode untuk memproses bijih besi berkadar rendah.
b. Proses pemurnian alumunium.
Proses pemurian alumunium dengan cara memanaskan alumunium hidroksida sampai lebih kurang 1300°C (diendapkan), akan didapatkan alumina. Karena titik lelehnya tinggi, alumina dilarukan ke dalam cairan klorit (garam Na3AlF6) yang berfungsi sebagai elektrolit sehingga titik lelehnya menjadi rendah (1000°C). Lima belas persen alumina (Al2O3) dapat diuraikan ke dalam kriolit, sedang proses elektrolisis di sini sebagai reduksi Al2O3. Bijih bauksit mula-mula dimurnikan terlebih dahulu dengan proses kimia dan alumunium oksida murni diuraikan dengan elektrolisis. Bauksit dimasukkan ke dalam kauksit soda, alumina di dalamnya membentuk natrium aluminat, bagian lain tidak bereaksi dan dapat dipisahkan.
c. Proses pemurnian tembaga.
Proses pemurnian tembaga diawali dengan penggilingan bijih tembaga kemudian dicampur dengan batu kapur dan bahan fluks silika. Tepung bijih dipekatkan terlebih dahulu, sesudah itu dipanggang sehingga terbentuk campuran FeS, FeO, SiO2, dan CuS. Campuran ini disebut kalsin dan dilebur dengan batu kapur sebagi fluks dalam dapur reverberatory. Besi yang ada larut dalam terak dan tembaga, besi yang tersisa ditaungkan ke dalam konventor. Udara dihembuskan ke dalam konventor selama 4 – 5 jam, kotoran-kotoran teroksidasi, dan besi membentuk terak yang dibuang pada selang waktu tertentu. Panas oksidasi yang dihasilkan cukup tinggi sehingga muatan tetap cair dan sulfida tembaga akhirnya berubah menjadi oksida tembaga dan sulfat. Bila aliran udara dihentikan, oksida bereaksi dengan sulfida membentuk tembaga blister dan dioksida belerang. Setelah itu, tembaga ini dilebur dan dicor menjadi slab, kemudian diolah lebih lanjut secara elektronik menjadi tembaga murni.
d. Proses pemurnian timah putih (Sn)
Proses pemurnian timah putih diawali dengan memisahkan Bijih timah dan pasir dengan mencuci lalu dikeringkan. Setelah itu, bijih itu dilebur di dalam dapur corong atau dapur nyala api dengan kokas dan dituang menjadi balok-balok kecil.
e. Proses pemurnian timbel/timah hitam (Pb)
Bijih-bijih timbel harus dipanggang terlebih dahulu untuk menghilangkan sulfida-sulfida, sedang timbel dengan campurannya yang lain berubah menjadi oksida timah hitam (PbO) dan sebagian lagi menjadi timbel sulfat (PbSO4). Dengan menambah kwarsa (SiO2) pada sulfat di atas suhu yang tinggi akan mengubah timbel sulfat menjadi silikat. Campuran silikat timbel dengan oksida timbel yang dipijarkan pakai kokas kemudian dicampur dengan batu kapur, akan menghasilkan timbel.
f. Proses pemurnian seng (Zn)
Proses pemurnian seng diawali dengan memisahkan bijih seng kemudian dipanggang dalam dapur untuk mengeluarkan belerang dan asam arang. Setelah itu terjadilah oksida seng, karbonatnya terurai dan sulfidanya dioksidasi. Bijih seng didapat dari senyawa belerang diantaranya karbonat seng (ZnCO3), silikat seng (ZnSiO4H2O), dan sulfide seng (ZnS).
g. Proses pemurnian magnesium
Untuk memperoleh magnesium dilakukan dengan jalan elektrolisis, yaitu dengan cara memijarkan oksida magnesium bersama-sama dengan zat arang (karbon) atau silisium ferro sebagai bahan reduksi. Setelah itu magnesium dapat terpisahkan
h. Proses pemurnian perak
Proses pemurnian perak dilakukan dengan jalan elektrolisis bijih-bijih perak. Bijih perak yang mengandung belerang dipanggang dahulu kemudian dicairkan. Bijih yang mengandung timbel dihaluskan kemudian dicairkan dengan memasukkan zat asam yang banyak sampai timbel terbakar menjadi glit-timbel dan dikeluarkan sebagai terak. Setelah itu, hanya tertinggal peraknya saja.
i. Proses pemurnian platina
Proses pemurnian platina tergantung pada zat-zat yang terkandung dalam bijih-bijih logam. Bijih-bijih yang mengandung emas dikerjakan dalam air raksa, sedangkan platina tidak dapat melarut dalam air raksa. Berikutnya adalah dengan proses kimiawi (proses elektrolisis). Platina itu dapat dibersihkan sampai tercapai keadaan yang murni.
j. Proses pemurnian nikel (Ni)
Proses pemurnian nikel diawali dengan pembakaran bijih nikel, kemudian dicairkan untuk proses reduksi dengan menggunakan arang dan bahan tambahan lain dalam sebuah dapur tinggi. Dari proses tersebut nikel yang didapat kurang lebih 99%. Jika hasil yang diinginkan lebih baik (tidak berlubang), proses pemurniannya dikerjakan dengan jalan elektrolisis di atas sebuah cawan tertutup dalam dapur nyala api. Reduktor yang digunakan biasanya mangan dan fosfor.
Selengkapnya...



Proses Pembuatan Cetakan Pasir



Langkah – langkah proses pembuatan cetakan pasir adalah antara lain :
i. Persiapkan flask, lantai yang bersih dan pola kayu produk dan gating systemnya. Perlu diingat agar pola kayu sudah dilakukan waxing dengan lilin batangan.
ii. Pembuatan pasir inti dari backing sand. Pembuatan inti dilakukan berulang-ulang. Karena inti yang dihasilkan terdapat retak, hal ini terjadi karena kurang padatnya inti pada proses ramming
atau proses pencabutan dari cetakan inti yang terlalu tergesa-gesa. Sehingga harus diperbaiki dengan penambahan molasses dan dilakukan ramming yang lebih kuat.
iii. Pisahkan kup dan drag pola kayu. Taburi tepung terigu di taburi pada lantai yang dibersihkan. Pola kayu bagian drag pertama kali ditutupi dengan pasir muka hingga seluuh bagian pola kayu (produk + gating system) tertutupi oleh pasir muka.
iv. Tambahkan dengan pasir belakang (backing sand), lalu diramming dengan bantuan palu dan rammer agar pasir menjadi padat. Proses dilakukan sebanyak 3 kali. Setiap awal penaburan pasir diberikan guratan pada lapisan pasir sebelumnya. Bertujuan agar pasir menjadi homogen dan menyatu terikat antar partikel pasir.
iv. Balik drag serta letakkan kup pada bagian atas posisi drag dengan posisi yang tetap. Setelah kup berada pada posisinya, lakukan langkah 1-3. Untuk benda cor dengan pola belah, penempatan harus dilakukan dengan hati – hati agar pola dan gating sistemnya tidak bergerak sehingga tidak menimbulkan cacat akibat pergeseran pola.
v. Angkat pola yang telah dipadatkan dengan pasir dari bagian drag dan kup. Keluarkan pola yang berada pada cetakan pasir dengan menggunakan ulir. Pengeluaran pola harus dilakukan dengan hati-hati agar cetakan pasirnya tidak rusak. Pada saat praktikum, pencabutan pola sangat sulit sekali untuk dilakukan. Hal ini dapat disebabkan oleh pelapisan lilin yang kurang merata dan benda cor yang memiliki dimensi agak besar dan bersudut Kerusakan yang dihasilkan pada cetakan pasir setelah pencabutan pola terbilang banyak. Namun segera dilakukan proses perbaikan dengan menggunakan pasir reparasi. didalam cetakan pasir.
vi. Bersihkan cetakan kemudian berikan coating cetakan pada bagian yang diperbaiki agar permukaan cetakan menjadi rata. Pemberian coating bertujuan agar pasir tidak mengalami pengikikisan oleh logam cair serta memperbaiki sifat mekanis dari permukaan logam. Kemudian cetakan dibakar dengan menggunakan api agar coating menyatu dengan butiran pasir dan butiran pasir tidak masuk kedalam logam cair.
vii. Setelah selesai proses coating, hal yang dilakukan selanjutnya adalah penyatuan kup dan drag yang kemudian dieratkan dengan menggunakan pengikat kawat. Saat penyatuan antara kup dan drag terjadi ambruknya pasir cetak sehingga bentuk cetakan menjadi tidak beraturan. Ini disebabkan akibat kurang padatnya pasir disekitar pola dan banyak bagian dari pola yang bersudut. Seharusnya pada bagian bersudut tersebut dilakukan fillet agar permukaan lebih membulat (rounded).
viii. Letakkan cetakan pasir diatas tatakan dan tempatkan didekat dapur peleburan logam. Letakkan cetakan dengan sprue menghadap keatas. Seharusnya pada bagian sprue diberikan sedikit area cekung sebagai pouring basin agar pada saat penuangan tidak terjadi turbulensi.
Selengkapnya...



Motor Bakar Diesel



Mesin diesel adalah sejenis mesin pembakaran dalam; lebih spesifik lagi, sebuah mesin pemicu kompresi, dimana bahan bakar dinyalakan oleh suhu tinggi gas yang dikompresi, dan bukan oleh alat berenergi lain (seperti busi).
Mesin ini ditemukan pada tahun 1892 oleh Rudolf Diesel, yang menerima paten pada 23 Februari 1893. Diesel menginginkan sebuah mesin untuk dapat digunakan dengan berbagai macam bahan bakar termasuk debu batu bara. Dia mempertunjukkannya pada Exposition Universelle (Pameran Dunia) tahun 1900 dengan menggunakan minyak kacang (biodiesel). Kemudian diperbaiki dan disempurnakan oleh Charles F. Kettering.
a. Bagaimana mesin diesel bekerja
Ketika gas dikompresi, suhunya meningkat, mesin diesel menggunakan sifat ini untuk menyalakan bahan bakar. Udara diisap ke dalam silinder mesin diesel dan dikompresi oleh piston yang merapat, jauh lebih tinggi dari rasio kompresi dari mesin menggunakan busi. Pada saat piston memukul bagian paling atas, bahan bakar diesel dipompa ke ruang pembakaran dalam tekanan tinggi, melalui nozzle atomising, dicampur dengan udara panas yang bertekanan tinggi. Hasil pencampuran ini menyala dan membakar dengan cepat.
Ledakan tertutup ini menyebabkan gas dalam ruang pembakaran di atas mengembang, mendorong piston ke bawah dengan tenaga yang kuat dan menghasilkan tenaga dalam arah vertikal. Rod penghubung menyalurkan gerakan ini ke crankshaft yang dipaksa untuk berputar, menghantar tenaga berputar di ujung pengeluaran crankshaft.
Scavenging (mendorong muatan-gas yang habis terbakar keluar dari silinder, dan menarik udara segara kedalam) mesin dilaksanakan oleh ports atau valves. Untuk menyadari kemampuan mesin diesel, penggunaan turbocharger untuk mengkompres udara yang disedot masuk sangat dibutuhkan; intercooler untuk mendinginkan udara yang disedot masuk setelah kompresi oleh turbocharger untuk meningkatkan efisiensi.
b. Tipe mesin diesel
Ada dua kelas mesin diesel: dua-stroke dan empat-stroke. banyak mesin diesel besar beroperasi dalam dua-stroke cycle. Mesin yang lebih kecil biasanya menggunakan empat-stroke cycle.
Biasanya kumpulan silinder digunakan dalam kelipatan dua, meskipun berapapun jumlah silinder dapat digunakan selama muatan di crankshaft di tolak-seimbangkan untuk mencegah getaran yang berlebihan. Inline-6 paling banyak diproduksi dalam mesin tugas-medium ke tugas-berat, meskipun V8 dan straight-4 juga banyak diproduksi.
c. Keunggulan dan kelemahan dibanding dengan mesin bensin
Mesin diesel lebih besar dari mesin bensin dengan tenaga yang sama karena konstruksi berat diperlukan untuk bertahan dalam pembakaran tekanan tinggi untuk penyalaan. Dan juga dibuat dengan kualitas sama yang membuat penggemar mendapatkan peninkatan tenaga yang besar dengan menggunakan mesin turbocharger melalui modifikasi yang relatif mudah dan murah. Mesin bensin dengan ukuran sama tidak dapat mengeluarkan tenaga yang sebanding karena komponen di dalamnya tidak mampu menahan tekanan tinggi, dan menjadikan mesin diesel kandidat untuk modifikasi mesin dengan biaya murah.
Penambahan turbocharger atau supercharger ke mesin meningkatkan ekonomi bahan bakar dan tenaga. Rasio kompresi yang tinggi membuat mesin diesel lebih efisien dari mesin menggunakan bensin. Peningkatan ekonomi bahan bakar juga berarti mesin diesel memproduksi karbon dioksida yang lebih sedikit.
Selengkapnya...



Material Cetakan Pasir (Sand Casting)



Pada proses peleburan digunakan dapur krusibel. Material yang digunakan adalah scrap Al hasil penelitian mahasiswa. Hal yang pertama kali dilakukan adalah proses persiapan dapur. Dimulai dari pembersihan tungku lebur dan melapisi dengan coating hingga penempatan briket batubara dalam tungku besar.
Selama proses peleburan, material Al yang digunakan dilakukan proses pre-heating. Hal ini bertujuan untuk menghilangkan moisture pada permukaan material untuk menghindari pembentukan gas dan melarut dalam logam cair yang dapat menyebabkan cacat gas. Setelah proses pre-heating maka material logam dimasukkan kedalam tungku dan dibiarkan melebur. Selama peleburan briket batubara terus ditambahkan untuk menjaga kestabilan suplai kalor untuk melebur logam.
i. Alloying
Pada proses pengecoran dimana selain bertujuan menghasilkan produk yang sesuai dengan dimensi juga dibutuhkan nilai sifat mekanis material yang sesuai. Pemberian material tambahan (alloying) bertujuan untuk meningkatkan harga sifat mekanis dari material. Untuk material Al pemberian alloying menggunakan material Cu, Zn, Mg, P, Si, Sr, dan Na.
Pada praktikum ini penguatan alloying tidak dilakukan. Jika dilakukan dan kemudian sampel dilakukan pengujian (tarik, keras) maka dihasilkan nilai yang lebih besar dibanding tanpa alloying.
ii. Degassing
Pada temperatur tinggi gas hidrogen akan cenderung berdifusi kedalam logam cair. Gas-gas hidrogen ini harus dikeluarkan dari Aluminium cair karena akan menyebabkan terjadinya cacat pada benda cor. Proses pengeluaran gas ini disebut proses degasser. Umumnya degasser yang digunakan adalah dalam bentuk tablet atau gas (gas argon dan gas nitrogen). Mekanisme pengeluaran gas pada logam Aluminium cair adalah sebagai berikut :
Tablet yang dimasukkan ke dalam Aluminium cair akan menghasilkan gas dalam bentuk gelembung yang hampir hampa udara (< 1 atm). Gas hidrogen yang terlarut dalam Aluminium tidak dapat keluar karena tekanan didalam Aluminium cair << 1 atm sedangkan tekanan diluar sebesar 1 atm. Akibatnya gelembung udara yang dihasilkan tablet masuk ke dalam gas hidrogen dan gelembung udara tersebut terbawa keatas bersaman dengan kotoran lain yang terlarut didalam Aluminium cair. Gas-gas atau gelembung udara tersebut sebagian akan menjadi dross dan akan dibuang melalui proses pembuangan dross. Pada praktikum ini degasser tidak digunakan.
iii. Cover Flux
Setelah proses degasser selesai dilanjutkan dengan proses pemberian flux. Proses pemberian flux bertujuan untuk menutupi atau covering permukaan logam Aluminium cair agar terhindar dari masuknya gas hidrogen kedalam logam aluminium. Pemberian flux dilakukan pada saat mulai pencairan aluiminium dengan cara menaburkan flux pada permukaan Aluminium cair. Covering flux berfungsi untuk covering permukaan logam cair agar terhindar dari masuknya gas hidrogen . Pemberian flux jenis ini dilakukan tanpa pengadukan. Pada saat praktikum digunakan flux covering.
Selengkapnya...



[TV] Online Live TV Streaming - Indonesia

Online Live TV Streaming - Indonesia